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ABSTRACT

We developed a maximum a posterior (MAP) reconstruction

method for PET image reconstruction incorporating MR im-

age information, with the joint entropy between the PET and

MR image features serving as the prior. A non-parametric

method was used to estimate the joint probability density

(JPD) of the PET and MR images. The sampling rate for

Parzen window estimation of the JPD was studied for both

simulated phantom and clinical FDG PET brain images. Us-

ing realistic simulated PET and MR brain phantoms, the

quantitative performance of the proposed algorithm was in-

vestigated. In particular, variations in the weighting factor on

the MAP prior as well as the variance in the Parzen window

were examined. Incorporation of the anatomical information

via this technique was seen to noticeably improve the noise

vs. bias tradeoff in various regions of interest.

Index Terms— positron emission tomography, Bayesian

image reconstruction, anatomical priors, joint entropy

1. INTRODUCTION

PET imaging technique provides important physiological and

biochemical information for clinical diagnosis and scientific

studies. However, even state-of-art PET imaging continues to

be affected by limited spatial resolution and inherently noisy

data. Incorporation of anatomical information obtained from

high-resolution MR/CT anatomical images may potentially

improve the PET image quality and quantitative accuracy.

The anatomical information is usually applied as the priors

in the Bayesian PET image reconstruction framework. These

techniques often consist of using segmented anatomic im-

ages, in which regional boundaries or labels are produced, to

penalize inter-voxel noise within the boundaries [1, 2].

Nevertheless, while many types of PET imaging tasks ex-

hibit strong correlations between anatomy and radiopharma-

ceutical uptake, the relationship can be complex and indirect

(e.g. increased lesion uptake in otherwise uniform anatomical

region, or areas of increased uptake in PET brain stimulation
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studies, which appear the same as any other portion of gray

matter in MR images). As such, an area of growing inter-

est is that of developing reconstruction algorithms designed

to take into account differences between PET and anatomical

segmentation [3, 4]. In particular, Somayajula et al. [5] pro-

posed to use the mutual information between features (e.g.

intensities or gradients) of MR/CT and PET images as pri-

ors in the reconstruction task to address the aforementioned

issue. It was later suggested by Nuyts that the use of only

the joint entropy component of the mutual information metric

was better conditioned to minimize introduction of bias into

the reconstructed images [6].

In this paper, we have designed and investigated a one-

step-late (OSL) maximum a posteriori (MAP) algorithm with

the joint entropy between features (such as intensity) of the

anato-functional image pairs as the prior. We tested the algo-

rithm using a simulated brain phantom. Non-parametric esti-

mation of the joint probability density (JPD) was performed

[7, 8]. Noise vs. bias tradeoff curves were generated for dif-

ferent regions of interest (ROIs) of the brain and the entire

brain, and were used to evaluate the proposed reconstruction

framework.

2. METHODS

2.1. MAP Reconstruction Algorithm

The MAP estimate of the functional image f from emission

sinogram data g is given by

f̂ = arg max
f≥0

P (g|f)P (f)

P (g)
. (1)

The expression P () indicates a probability of the variable en-

closed in parenthesis.

Let the N feature vectors extracted from the functional

and anatomical images be represented by xi and yi, respec-

tively for i = 1, 2, . . . , N . Note if only one feature, e.g. the

intensity of the two images are used, xi and yi represent the

functional and anatomical images, respectively. The feature

vectors, xi and yi, can be considered as realizations of the

random feature vectors X and Y. The prior P (f) is assumed

to have a Gibbs distribution of the form

P (f) =
1

W
exp(−βH(X,Y)), (2)
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where W is a normalization factor, β is a positive constant,

and H(X,Y) is the joint entropy of the two random feature

vectors.

Seeking the solution f to (1) is equivalent to finding f that

maximizes the log-posterior probability:

logP (g|f)− βH(X,Y) + k, (3)

where the constant k represents the contribution of the W

term in (2) and the denominator in (1).

The joint entropy of two random feature vectors H(X,Y)
can be evaluated by constructing the vector random variable

Z = [X,Y]T and evaluating H(Z). The estimate of this en-

tropy will be dependent on the covariance ψZ of the multi-

dimensional Parzen window functions that are used in the

density estimator for Z. Assume that this covariance matrix is

diagonal ψZ = DIAG(ψXX, ψYY), ψXX and ψYY being the

diagonal covariance matrices for the functional and anotom-

ical image feature vectors, respectively. The entropy of the

random variable Z may be expressed as

H(Z) = −EZ[lnp(Z)] = −
∑
Z

p(Z)lnp(Z). (4)

The probability density (PD) p(Z) is approximated by a su-

perposition of Gaussian densities centered on the elements zj

of a sample S drawn from Z

P̂ (Z) =
1

NS

∑
j∈S

Gψ(Z− zj), (5)

where NS is the size of the sample S,

Gψ(Z) = (2π)
−n

2 |ψ|−
1

2 exp(−
1

2
ZT ψ−1Z), (6)

and n is the dimension of Z. The use of the Gaussian density

(6) in the Parzen density estimate (5) simplifies the subse-

quent analysis but is not necessary [8].

Applying the Poisson statistics to the first term of (3), we

derive the following iterative procedure as what was done by

Green [9]

f new
i =

f old
i∑

j cij + β
∂H(X,Y)

∂fi

|fi=f old
i

∑
j

cijgij∑
i cijf

old
i

. (7)

The OSL strategy is applied in calculating the derivative of

the joint entropy.

If only the image intensity is used as the feature consid-

ered, the derivative of the joint entropy H(Z) with respect to

the functional image intensity fi becomes
∂H(Z)

∂xi

. The JPD

can be represented by

P̂ (X,Y) =
1

NS

∑
j∈S

[(2π)−1(ψj
XX

ψ
j
YY

)−
1

2 (8)

· exp(−
1

2

(X− xj)
2

ψ
j
XX

−
1

2

(Y − yj)
2

ψ
j
YY

)]

and the derivative of the joint entropy is

∂H(X,Y)

∂xi

= −
∑
X,Y

(
lnP̂ (X,Y) + 1

) ∂P̂ (X,Y)

∂xi

= −
∑
X,Y

[−lnNs + ln
∑
j∈S

((2π)−1 · (ψj
XX

ψ
j
YY

)−
1

2 ·

exp(−
1

2

(X− xj)
2

ψ
j
XX

−
1

2

(Y − yj)
2

ψ
j
YY

)) + 1]·

1

Ns

(2π)−1 · (ψi
XXψi

YY)−
1

2 ·

exp(−
1

2

(X− xi)
2

ψi
XX

−
1

2

(Y − yi)
2

ψi
YY

) · (
X− xi

ψi
XX

) (9)

2.2. Phantom Simulation

We used a new mathematical brain phantom [10] for the pur-

pose of performing realistic simulations. The brain phantom

was constructed using subdivision surfaces [11], which can

be used to efficiently model structures with an arbitrary topo-

logical type, such as the brain, skull, muscle tissue, and vas-

culature. Surfaces were modeled based on a segmented MRI

dataset of a normal subject, with 100 structures identified and

modeled.

To test the MAP algorithm described above, we per-

formed analytical simulations of the brain phantom, where

the activities in the brain were based on a clinical raclopride

study. Data were simulated for the geometry of the Discovery

RX PET/CT scanner [12], but with the transaxial dimensions

(crystal dimensions, field of view) scaled by 0.5 to simulate

a dedicated brain scanner. (We already have in place a ded-

icated Monte Carlo simulation package for the brain-only

HRRT scanner [13], which will be applied later.)

2.3. Evaluation Metrics

To evaluate the reconstructed images quantitatively, we used

the tradeoff between normalized mean squared error (NMSE)

and normalized standard deviation (NSD) for individual ar-

eas of the brain (caudate, putamen, gray matter, white matter,

cerebellum, and brain stem with exact boundaries) and the

tradeoff between average NMSE and average NSD of the in-

dividual areas over the whole brain.

The NMSEr for each ROI r (ranging from 1 to 6) covering

one area of the brain was calcuated using

NMSEr =

(
f̄ r − μ̄r

μ̄r

)2

, (10)

where f̄ r = 1
n

∑n

i=1 f r
i and μ̄r = 1

n

∑n

i=1 μr
i ; f r

i and μr
i

denote the ith reconstructed and reference true activity value,

respectively; and n is the number of voxels in the ROI r. We

adopted such an ROI-based definition as we believe it should

minimize the effect of voxel noise on this bias-measuring
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metric. For each ROI, the NMSE value was plotted against

the NSD value, as calculated using

NSDr =

√
1

n−1

∑n

i=1(f
r
i − f̄ r)2

f̄ r
, (11)

where f r
j , f̄ r, and n were defined as those in (10).

The overall bias was measured by

NMSE =
1

R

R∑
r=1

NMSEr, (12)

where R = 6 including all the ROIs. The average NMSE

value was subsequently plotted against the average NSD

value over the regions, i.e. 〈NSDr〉.

3. RESULTS

3.1. Probability Density Function Estimation

When non-parametric estimation of PD function is applied as

in (5), the number of sampled voxels and the variance of in-

dividual Gaussian function are major variables to determine.

Based on the statistical noise properties of emission tomogra-

phy images [14], we use scaled squared individual PET voxel

intensity as the variance for each Gaussian function and the

scaling factor is named α. We tested a wide range of α and

landed on a range of α = 0.002 to 0.01 with resulting prob-

abilities matching well with those calculated from image his-

togram. The effect of α on the PD estimation therefore on the

image reconstruction will be presented in the next subsection.

(a) (b)

Fig. 1. Center slice of a clinical FDG brain image (a) and a

simulated OS-EM reconstructed brain image (b).

In terms of the sample S in (5), the best we can do would

be using every voxel in the image. As it is costly to ex-

haust the voxels, we studied the effect of sampling rates on

the estimated PD aiming to save computing time. A clini-

cal FDG brain image of size 256 × 256 × 128 and a simu-

lated first-iteration OS-EM reconstructed brain image of size

128 × 128 × 47 shown in Fig. 1 were tested. The corre-

sponding estimated PD curves with different sampling rates

are presented in Fig. 2. As shown in Fig. 2 (a), the sampling

rate of 1 voxel every 16 voxels in the clinical FDG image

still reaches PD estimation close to that acquired using every

voxel in the entire image. The results in Fig. 2 (b) shows for

our simulation study, it is appropriate to use 1 every 4 voxels

to estimate the PD.
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Fig. 2. Probability density calculated using the Parzen win-

dow method from (a) the clinical FDG image and (b) the sim-

ulated reconstructed image shown in Fig. 1, using all voxels

in the images (org) and different sampling rates (1 every n

voxels), α = 0.01.

3.2. Reconstructed Image Evaluation

The weighting factor β in (7) is a determining factor in the

MAP reconstruction. Knowing the scale of system matrix

components, we tested β ranging from 0.001 to 10. When β

was smaller than ∼0.1, the effect of the prior information did

not appear in the reconstructed images. When β was larger

than ∼5, there were outrageous negative values in the recon-

structed images, meaning the β weighted term was negative

and larger than the
∑

j cij in (7). The effect of β within the

reasonable range was shown in Fig. 3. As shown in the plots

for individual ROIs, applying the prior information led to bet-

ter tradeoff of image noise and image bias. Among the β

values tested, better improvement was achieved when β was

increased from 0.2 to 1. Further increase of β to 2 started to

reverse the improvement. The range from β = 0.2 to 0.5
seemed an optimal choice for improving NSD vs. NMSE

tradeoff.

As mentioned in the last subsection, the effect of α for a

fixed β was also studied. The average NSD vs. the average

NSME for different α with β = 0.5 was plotted in Fig. 4.

The improvement of NSD-NSME tradeoff was slightly better

when decreasing α from 0.01 to 0.002. Decreasing α more,

we did not get reasonable reconstructed image. It may infer

that using too small a Parzen window variance, we can not

estimate the image PD correctly.

To show how the image noise was improved visually us-

ing the MAP reconstruction algorithm, we plotted two images

that had similar average NMSEs shown in Fig. 4. The 4th it-

eration from β = 0 and the 2nd iteration from β = 0.5 and

α = 0.002 reconstructed images are shown with the phan-

tom image in Fig. 5. It is quite noticeable that the noise is

significantly reduced in the MAP reconstructed image.

4. SUMMARY

We developed an OSL MAP reconstruction algorithm for PET

image reconstruction using the joint entropy of anatomical

and functional image features as the prior. The algorithm was
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tested using simulated PET and MR brain images. The sam-

pling rate of Parzen window estimation of the PD for PET

images was studied to save computing time. The effects of

the prior weighting factor and the Parzen window variance

were studied quantitatively using the NSD-NMSE tradeoff as

the measure of the reconstructed image noise and image bias.

The MAP reconstructed image had better noise vs. bias trade-

off when the prior weighting factor was chosen appropriately.

With the same average NMSE, the noise level reduction in

MAP reconstructed images was visually noticeable compared

to the OS-EM reconstructed images.
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Fig. 3. The NSD vs. NMSE for different areas of the brain

image changing with iterations, α = 0.002 for the curves other

than β = 0 (OS-EM reconstruction).
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